TCP 如何保证可靠性

检验和

TCP检验和的计算与UDP一样,在计算时要加上12byte的伪首部,检验范围包括TCP首部及数据部分,但是UDP的检验和字段为可选的,而TCP中是必须有的。计算方法为:在发送方将整个报文段分为多个16位的段,然后将所有段进行反码相加,将结果存放在检验和字段中,接收方用相同的方法进行计算,如最终结果为检验字段所有位是全1则正确(UDP中也是全为1则正确),否则存在错误。

确认应答与序列号

TCP将每个数据包都进行编号,这就是序列号

序列号的作用:

  • 保证可靠性(当接收到的数据少了某个序号的数据时,能马上知道)
  • 保证数据的按序到达
  • 提高效率,可实现多次发送,一次确认
  • 去掉重复数据

TCP通过确认应答机制实现可靠的数据传输。在TCP的首部中有一个标志位——ACK,此标志位表示确认号是否有效。接收方对于按序到达的数据会进行确认,当标志位ACK=1时确认首部的确认字段有效。进行确认时,确认字段值表示这个值之前的数据都已经按序到达了。而发送方如果收到了已发送的数据的确认报文,则继续传输下一部分数据;而如果等待了一定时间还没有收到确认报文就会启动重传机制。

img

超时重传

当报文发出后在一定的时间内未收到接收方的确认,发送方就会进行重传(通常是在发出报文段后设定一个闹钟,到点了还没有收到应答则进行重传)。
一种情况是发送包丢失了,其基本过程如下:

img

另一种情况是ACK 丢失,过程如下:

img

当接收方接收到重复的数据时就将其丢掉,重新发送ACK。而要识别出重复的数据,前面提到的序列号就起作用了。

重传时间的确定:

重传时间的确定:报文段发出到收到应答中间有一个报文段的往返时间RTT,显然超时重传时间RTO会略大于这个RTT,TCP会根据网络情况动态的计算RTT,即RTO是不断变化的。在Linux中,超时以500ms为单位进行控制,每次判定超时重发的超时时间都是500ms的整数倍。其规律为:如果重发一次仍得不到应答,就等待2500ms后再进行重传,如果仍然得不到应答就等待4500ms后重传,依次类推,以指数形式递增,重传次数累计到一定次数后,TCP认为网络或对端主机出现异常,就会强行关闭连接。

连接管理

连接管理机制即TCP建立连接时的三次握手和断开连接时的四次挥手。

流量控制

接收端处理数据的速度是有限的,如果发送方发送数据的速度过快,导致接收端的缓冲区满,而发送方继续发送,就会造成丢包,继而引起重传等一系列连锁反应

因此TCP支持根据接收端的处理能力,来决定发送端的发送速度,这个机制叫做流量控制

在TCP报文段首部中有一个16位窗口长度,当接收端接收到发送方的数据后,在应答报文ACK中就在将自身的缓冲区快满了,就将窗口设置为更小的值通知发送方。如果缓冲区满,就将窗口设置为0,发送方收到后就不再发送数据,但是需要定期发送一个窗口探测数据段,使接收端把窗口大小告诉给发送端

img

注意:窗口大小不受16位窗口大小限制,在TCP首部40字节选项中还包含一个窗口扩大因子M,实际窗口大小是窗口字段的值左移M位。

拥塞控制

流量控制解决了两台主机之间因传送速率而可能引起的丢包问题,在一方面保证了TCP数据传送的可靠性。然而如果网络非常拥堵,此时再发送数据就会加重网络负担,那么发送的数据段很可能超过了最大生存时间也没有到达接收方,就会产生丢包问题。

为此TCP引入慢启动机制,先发出少量数据,就像探路一样,先摸清楚当前的网络拥堵状态,再决定按照多大的速度传送数据。

在此处引入一个拥塞窗口:

发送开始时定义拥塞窗口大小为1;每次收到一个ack应答,拥塞窗口加1;而在每次发送数据时,发送窗口取拥塞窗口,发送窗口取拥塞窗口与接收段接收窗口最小者

慢开始算法:

发送方维持一个叫做拥塞窗口cwnd(congestion window)的状态变量。拥塞窗口的大小取决于网络的拥塞程度,并且动态地在变化。发送方让自己的发送窗口等于拥塞窗口,另外考虑到接受方的接收能力,发送窗口可能小于拥塞窗口。

慢开始算法的思路就是,不要一开始就发送大量的数据,先探测一下网络的拥塞程度,也就是说由小到大逐渐增加拥塞窗口的大小。

这里用报文段的个数作为拥塞窗口的大小举例说明慢开始算法,实际的拥塞窗口大小是以字节为单位的。如下图:

img

从上图可以看到,一个传输轮次所经历的时间其实就是往返时间RTT,而且没经过一个传输轮次(transmission round),拥塞窗口cwnd就加倍。

为了防止cwnd增长过大引起网络拥塞,还需设置一个慢开始门限ssthresh状态变量。ssthresh的用法如下:当cwnd<ssthresh时,使用慢开始算法。
当cwnd>ssthresh时,改用拥塞避免算法。
当cwnd=ssthresh时,慢开始与拥塞避免算法任意

注意,这里的“慢”并不是指cwnd的增长速率慢,而是指在TCP开始发送报文段时先设置cwnd=1,然后逐渐增大,这当然比按照大的cwnd一下子把许多报文段突然注入到网络中要“慢得多”。

拥塞避免算法:

拥塞避免算法让拥塞窗口缓慢增长,即每经过一个往返时间RTT就把发送方的拥塞窗口cwnd加1,而不是加倍。这样拥塞窗口按线性规律缓慢增长。

无论是在慢开始阶段还是在拥塞避免阶段,只要发送方判断网络出现拥塞(其根据就是没有按时收到确认,虽然没有收到确认可能是其他原因的分组丢失,但是因为无法判定,所以都当做拥塞来处理),就把慢开始门限ssthresh设置为出现拥塞时的发送窗口大小的一半(但不能小于2)。然后把拥塞窗口cwnd重新设置为1,执行慢开始算法。这样做的目的就是要迅速减少主机发送到网络中的分组数,使得发生拥塞的路由器有足够时间把队列中积压的分组处理完毕。

整个拥塞控制的流程如下图:

img

(1)拥塞窗口cwnd初始化为1个报文段,慢开始门限初始值为16
(2)执行慢开始算法,指数规律增长到第4轮,即cwnd=16=ssthresh,改为执行拥塞避免算法,拥塞窗口按线性规律增长
(3)假定cwnd=24时,网络出现超时(拥塞),则更新后的ssthresh=12,cwnd重新设置为1,并执行慢开始算法。当cwnd=12=ssthresh时,改为执行拥塞避免算法

关于 乘法减小(Multiplicative Decrease)和加法增大(Additive Increase):

“乘法减小”指的是无论是在慢开始阶段还是在拥塞避免阶段,只要发送方判断网络出现拥塞,就把慢开始门限ssthresh设置为出现拥塞时的发送窗口大小的一半,并执行慢开始算法,所以当网络频繁出现拥塞时,ssthresh下降的很快,以大大减少注入到网络中的分组数。“加法增大”是指执行拥塞避免算法后,使拥塞窗口缓慢增大,以防止过早出现拥塞。常合起来成为AIMD算法。

注意:“拥塞避免”并非完全能够避免了阻塞,而是使网络比较不容易出现拥塞。

快重传算法:

快重传要求接收方在收到一个失序的报文段后就立即发出重复确认(为的是使发送方及早知道有报文段没有到达对方,可提高网络吞吐量约20%)而不要等到自己发送数据时捎带确认。快重传算法规定,发送方只要一连收到三个重复确认就应当立即重传对方尚未收到的报文段,而不必继续等待设置的重传计时器时间到期。如下图:

img

快恢复算法:

快重传配合使用的还有快恢复算法,有以下两个要点:

当发送方连续收到三个重复确认时,就执行“乘法减小”算法,把ssthresh门限减半(为了预防网络发生拥塞)。但是接下去并不执行慢开始算法
考虑到如果网络出现拥塞的话就不会收到好几个重复的确认,所以发送方现在认为网络可能没有出现拥塞。所以此时不执行慢开始算法,而是将cwnd设置为ssthresh减半后的值,然后执行拥塞避免算法,使cwnd缓慢增大。如下图:TCP Reno版本是目前使用最广泛的版本。

img

注意:在采用快恢复算法时,慢开始算法只是在TCP连接建立时和网络出现超时时才使用